
JuniKhyat (UGC Care Group I Listed Journal)

ISSN: 2278-4632 Vol-8 Issue-02 Sep 2018

1

I

Architectural Framework for Parallel and Pipelined 2-D Median Filters
Snehasis Dey, College of Engineering Bhubaneswar

Abstract— The 2-D median filters that are currently in use in the literature require a lot of computation. It is suggested to implement
the fundamental median filtering operation on photos at the architecture level while minimizing the quantity of data handled. On a 32-
bit hardware processing device, the suggested architecture reads 4 pixels at a time from the input image; the subsequent processing is
done by a parallel and pipelined median filter architecture. Eight input pixels are processed by two read operations, resulting in the
initial latency of four output pixels. The suggested architecture promises faster read operations and fewer reads overall.

Index Terms—Median filter, parallel median filter, pipelined median filter, systolic arrays.

I. INTRODUCTION

MAGE processing is integral to deciphering the intelligence associated with it. Generally, image processing involves huge

data handling, and modeling human intelligence demands heavy amount of computations on automated processes. Handling

images involves loss of original information at vari- ous levels through environment and process stages. One such level is the

processing of image for feature extraction [1]. Prior to this, preprocessing an image for the retrieval of the original information

from non-Gaussian noise corruption is carried out mostly by nonlinear digital filters. Dominant among these are

median-based filters.

Median filter provides robustness to impulse noise; how- ever, the development of median filtering algorithms does not include

the requirements of real-time intelligence systems. Generic processing ICs do not provide cost effective solution for image

processing because of predefined architecturallimitations [2]. In addition, there is always a tradeoff between the quality of

information contained in images and the resources required to handle the images. FPGAs are suffi- ciently flexible and cost

effective for prototyping and recon- figuring the applications [3] and, therefore, provide sufficient opportunity for the development

of application specific archi- tectures which cater to real-time requirements. Basic median filter can be implemented on specific

architectures by perform- ing median operation through sorting-based systolic arrays [4] and nonsorting-based techniques [5]–[8].

Systolic arrays are continuously optimized by researchers [9]–[11]. The archi- tecture developed by Vega-Rodríguez et al. [4]

exploits 32- bit data-width hardware for image data transfer; they have implemented the architecture as a systolic array which is

reported in [10].

The architecture proposed in this letter handles image data effectively in such a way that a pixel in the input image is read

only twice in comparison with architectures reported in the literature, wherein a pixel is read three or more times. Reduction in

the number of read operations for filtering an image ensures reduction in the overall operating time. The proposed architecture

also offers the advantage that it can be employed for different word length realizations, programmable digital signal processing,

ASICs, and reconfigurable architec- tures. In addition, the proposed architecture does not impose any constraint on the time

required for reading and processing pixels.

II. MEDIAN FILTER MEETING REAL-TIME

REQUIREMENTS

Vega-Rodríguez et al. [4] have presented an architecture for basic median filter for systolic array implementation [10]. The

architecture employs pipelining and parallelism. It is finally implemented with FPGA as target device. The FPGA is interfaced

with computer through 32 bit PCI port for real-time interfacing and better human interactions. Every read instruc- tion on a 32 bit

system can read 4 pixels, each 8 bit wide. Multiple pixels on a single read cycle and parallelism on sys- tolic array lead to

simultaneous production of four filtered pixels. The parallel and pipelined median filter architecture is shown in Fig. 1. Smith’s

network [10] introduced paral- lelism and pipelining by splitting the nine level systolic arrays into two stages. The first stage in

Fig. 1 is called elementary sorting stage also known as E-stage. The next stage is called network sorting stage also known as N-

stage, with six levels of

JuniKhyat (UGC Care Group I Listed Journal)

ISSN: 2278-4632 Vol-8 Issue-02 Sep 2018

2

×

×
×

Fig. 1. Real-time median filter proposed by Vega-Rodríguez et al. [4].

Fig. 2. Part of systolic array optimized by Smith [10].

comparators as shown in Fig. 2. It is also denoted as network node in the figure.

The output pixel value is calculated by considering eight neighbors with respect to a center pixel and 3 3 mov- ing mask.

In order to read 4 pixels of the input image in a machine cycle, the first three rows are considered at the start. With respect

to these three rows, the first four columns capture three row vectors, each vector containing 4 pixels. Each row vector containing

a set of four 8 bit pixels forms a 32 bit word. Before the start of the processing, three words are available for transfer to the

architecture. Three consecutive read operations result in the transfer of a 3 4 matrix to the architecture. The last two columns of

every 3 4 matrix pro- cessed previously are sorted and stored. These stored elements are combined with incoming 3 4 matrix

for the formation of a 3 6 matrix. Consequently, this provides for placing four 3 3 masks simultaneously with respect to four

center pixels.

In the architecture, the arrangement of four parallel network nodes results in four filtered pixels at a time. A set of three read

operations, one cycle of filtering operation, and one cycle of write operation is the sequence of operations required for completing

one cycle. The parallelism uses only 52 compara- tors for producing four filtered output pixels. This obviates the need for 76

comparator operations as employed in the approaches reported in the literature.

JuniKhyat (UGC Care Group I Listed Journal)

ISSN: 2278-4632 Vol-8 Issue-02 Sep 2018

3

× ×

— −

— −

— −

Fig. 3. Proposed two stage pipelining scheme.

III. ARCHITECTURE WITH REDUCED DATA HANDLING

A fast median filtering scheme and a new architecture for hardware implementation on 32 bit system are proposed. The

proposed scheme is common to both reconfigurable architectures and general purpose computing platforms.

A. Median Filtering Scheme for Effective Data Handling and Parallel Filtering

The proposed scheme is shown in Fig. 3. The objective is to effectively handle pixels for reducing repeated read operations.

Beginning with the input image, the first four rows of the pix- els are selected; the pixels in the selected rows are grouped as

column vectors of 4 pixels each. Each column vector is read as one 32 bit data word. Four column vectors are presented as a

single 4 4 matrix, where 3 3 masks can be applied with respect to four center pixels. Only two words are transferred instead of

three or more words for completing one processing cycle. Only a single processing cycle is required for generat- ing four filtered

outputs; these four outputs are generated by four filters, namely, F1–F4. The two words can be transferred in one or two machine

cycles depending on the capability of system. For simplicity, reading two words per machine cycle is considered. The first two

column vectors are transferred in cycle 1 and the words are stored in elements S1 and S2, each of size 4 1. In the next machine

cycle, the third and fourth column vectors of selected rows are transferred and combined with the previously stored columns to

form a 4 4 matrix. In this process, the elements of the 4 4 matrix are grouped such way that four 3 3 sets are available with

respect to the pixels encircled in Fig. 3. Each encircled pixel happens to be the center pixel of an eight neighborhood. By

median

Fig. 4. Proposed CPMA.

filtering each set, four output pixels, namely, P1–P4 are gen- erated. Once the execution of filtering process is over, the latest two

column vectors are stored in S1 and S2; the lat- est two column vectors are now ready for concatenation with the new incoming

set of vectors in the subsequent process- ing cycles. This process repeats until the last column vector is processed and the

first sets of two rows are made avail- able in the output image. For the selection of the next set of rows, only rows 3 to 6 need to

be considered; the above pro- cess is repeated for finding the next two rows of the output image.

B. Column-Vectors Processing Median Filter Architecture

The column-vectors processing median filtering architec- ture (CPMA) is based on the proposed scheme for effective data

handling and parallel filtering. CPMA requires 8 pix- els, I(0 1,0 3), at the input. These 8 pixels are transferred as two 32

bit words. These are the column vectors of input pixels, I(0,0 3) and I(1,0 3). Input pixels representing the first and second

columns are sorted in the ascending order and stored; the sorting is carried out by the E-stage. After E-stage, 24 values in eight

different sorted sets are available. These sets provide inputs to four network nodes operating in

parallel in the N-stage. N1 receives values from I(−1,0−2), I(0,0 2), and I(1,0 2) similar to F1 in Fig. 3. N2, N3, and

N4 also receive values from input pixel matrix as shown in Fig. 4 similar to filters F2, F3, and F4. E-stage and N-stage are

allocated each one machine cycle. Though E-stage has only three stages of compare-and-swap operations in com- parison with

six stages of compare-and-swap operations at the N-stage; it is a tradeoff between storage elements and speed. However, the

speed has a dependence on the user’s decision to split or not the N-stage. Pipelining between E- stage and N-stage requires 12

storage elements for holding the sorted set of values produced by the E-stage. All fourfiltered output pixels are organized as

a word; the word is sub- sequently loaded to the memory for write operation. CPMA, therefore, needs four machine cycles to

JuniKhyat (UGC Care Group I Listed Journal)

ISSN: 2278-4632 Vol-8 Issue-02 Sep 2018

4

×

×

× ×

× ×

complete read, E- stage, N-stage, and write operations. It is to be noted that the machine cycles of this section are different from

that of the scheme for effective data handling described in the previous section.

IV. HARDWARE IMPLEMENTATION AND PERFORMANCE ANALYSIS

For the purpose of verifying the functionality of CPMA, the design is implemented in RTL Verilog HDL using XILINX ISE

Design Suite 14.7 and synthesized for implementation in Xilinx FPGA Virtex 4 XC4VSX25. This FPGA is cho- sen for

straight forward comparison with the state-of-the-art nonsorting methods [5], [8], sorting methods [10], [11], and sorting-based

parallel architecture [4] available in the litera- ture. The comparison is in terms of resource utilization and speed. The results are

presented in Table I for the purpose of comparison of the performance metrics. The schemes in Table I employ 3 3 masks.

Input sample width is 8 bits. The focus of the methods presented in [5], [8], [10], and [11] is on the design of new median finding

methods with improved resource and time metrics and their pipelined architectures. For each cycle, these methods require nine

input values and use the resources optimally. Although the proposed CPMA is based on the existing sorting method in [4],

parallelism and pipelining reduce repeated comparator operations of the input pixels. The proposed CPMA also reduces the

number of times a pixel is read and transferred for processing.

Architecture in [4] needs 12 pixel values as input. CPMA needs only 8 pixels as input. Reading of two words per cycle

requires only one machine cycle for reading input pixels from memory, i.e., 8 pixels are transferred in two 32 bit words. In

comparison, scheme in [4] needs two reading cycles before an execution cycle. The extra read operation results in the addi- tion of

one more machine cycle which is 25% extra burden on overall processing time in comparison with the proposed architecture.

Consider an image with m n number of pixels. In the scheme proposed in [4], every pixel is read and transferred three times to

the median finding architecture, i.e., 3 m n number of pixel read operations are executed for producing the filtered output image.

In CPMA, an input image pixel is read and transferred to the architecture only twice, which means only 2 m n number of

pixel read operations need to be executed for producing the filtered image. Proposed CPMA handles only two-third of the data in

comparison with the best schemes available in the literature. Implementations presented in [5], [8], [10], and [11] require that

pixel of the input image be handled nine times.

Table I lists the latency cycles in the pipelined designs. Throughput is displayed next. Throughput is defined as the number of

median outputs generated per clock cycle. Fast median-finding word comparator array (FM-WCA) [11] is the latest median

finding word comparator array and reported to be the fastest in the pipelined architectures, for example,

TABLE I

3 × 3 MEDIAN FILTER IN XILINX FPGA VIRTEX 4 XC4VSX25 (N = 9, INPUT SAMPLE WIDTH = 8 BITS)

TABLE II

3 × 3 MEDIAN FILTER IN XILINX FPGA VIRTEX 7 XC7VX330T

low hardware complexity pipelined rank filter (LCBP) [5] and Cadenas’s method [8]. However, Cadenas’s method has fewer

latency cycles. FM-WCA uses 7% fewer DFFs and smaller latency than Smith’s. LCBP, Cadenas’s, Smith’s, and FM- WCA are

implemented as pipelined architectures. Throughput for all these methods is same and not modified for improve- ments at the same

JuniKhyat (UGC Care Group I Listed Journal)

ISSN: 2278-4632 Vol-8 Issue-02 Sep 2018

5

speed. Parallelism with pipelining is intro- duced in Vega’s architecture and CPMA for the improvement of throughput at 454

MHz. The introduction of parallelism has reduced the amount of image data to be handled by these architectures. Vega’s

architecture handles only 33.3% of image data handled by pipelined methods. But CPMA handles only 66.6% image data handled

by Vega’s architecture. It is evident from Table I that the number of times a pixel in input image read is only twice in the complete

filtering process of the input image. Per-throughput resources of CPMA are comparatively fewer than Vega’s architecture, and

speed of 1816 MHz is sig- nificantly higher than FM-WCA and other methods. Table II presents the implementation of sorting-

based methods for eval- uating resource utilization and the speed on the state-of-the-art prototyping platform. Performance of CPMA

is further con- firmed by Xilinx FPGA Virtex 7 implementation. CPMA uses at least 30% less hardware resources than FM-WCA

and offers increased throughput four times that of FM-WCA. Similarly, CPMA uses 2.5% less logical resources and handles 33.3%

less image data for the same throughput than architecture in [4].

CONCLUSION

In real-time processing, computationally demanding median filtering algorithms present a difficulty. Optimization of the amount of

data handled at the architecture level with pipelining and parallelism of the current systolic array is taken into consideration for the

basic median filter. The size of the image to be filtered determines how many filter processing cycles are needed, however the

suggested architecture's median filtering requires less data handling. The suggested architecture significantly reduces the time and

resource requirements for handling picture median filtering. In the context of real-time processing, more pipelining and parallelism

optimization may result in improvements.
REFERENCES

[1] G. A. Baxes, Digital Image Processing: Principles and Applications. New York, NY, USA: Wiley, 1994.
[2] M. J. S. Smith, Application-Specific Integrated Circuits. Reading, MA, USA: Addison-Wesley, 2008.
[3] S. Hauck, “The roles of FPGAs in reprogrammable systems,” Proc. IEEE, vol. 86, no. 4, pp. 615–638, Apr. 1998.

[4] M. A. Vega-Rodríguez, J. M. Sánchez-Pérez, and J. A. Gómez-Pulido, “An FPGA-based implementation for median filter meeting the real- time
requirements of automated visual inspection systems,” in Proc. 10th Mediterr. Conf. Control Autom., 2002.

[5] D. Prokin and M. Prokin, “Low hardware complexity pipelined rank filter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 6, pp. 446–450,
Jun. 2010.

[6] J. Cadenas, G. M. Megson, R. S. Sherratt, and P. Huerta, “Fast median calculation method,” Electron. Lett., vol. 48, no. 10, pp. 558–560, May 2012.
[7] J. Cadenas, “Pipelined median architecture,” Electron. Lett., vol. 51, no. 24, pp. 1999–2001, Nov. 2015.
[8] J. O. Cadenas, G. M. Megson, and R. S. Sherratt, “Median filter archi- tecture by accumulative parallel counters,” IEEE Trans. Circuits Syst. II, Exp.

Briefs, vol. 62, no. 7, pp. 661–665, Jul. 2015.

[9] B. Morcego, J. Frau, and A. Català, “Suavizado de imágenes en tiempo real mediante filtrado por mediana utilizando arrays sistólicos,” in Proc. VII DCIS,
Toledo, Spain, 1992, pp. 545–546.

[10] J. L. Smith, “Implementing median filters in xc4000e FPGAs,” Xilinx Xcell, vol. 23, no. 1, p. 16, 1996.
[11] J. Subramaniam, J. K. Raju, and D. Ebenezer, “Fast median-finding word comparator array,” Electron. Lett., vol. 53, no. 21, pp. 1402–1404, Dec. 2017.

